jueves, 23 de mayo de 2013

1.6 APLICACIONES TECNOLÓGICAS DE LA EMISIÓN ELECTRÓNICA DE LOS ÁTOMOS



El trazado isotópico en biología y en medicina
Los diferentes isótopos de un elemento tienen las mismas propiedades químicas. El reemplazo de uno por otro en una molécula no modifica, por consiguiente, la función de la misma. Sin embargo, la radiación emitida permite detectarla, localizarla, seguir su movimiento e, incluso, dosificarla a distancia. El trazado isotópico ha permitido estudiar así, sin perturbarlo, el funcionamiento de todo lo que tiene vida, de la célula al organismo entero. En biología, numerosos adelantos realizados en el transcurso de la segunda mitad del siglo XX están vinculados a la utilización de la radioactividad: funcionamiento del genoma (soporte de la herencia), metabolismo de la célula, fotosíntesis, transmisión de mensajes químicos (hormonas, neurotransmisores) en el organismo.
Los isótopos radioactivos se utilizan en la medicina nuclear, principalmente en las imágenes médicas, para estudiar el modo de acción de los medicamentos, entender el funcionamiento del cerebro, detectar una anomalía cardiaca, descubrir las metástasis cancerosas.
Las radiaciones y la radioterapia
Las radiaciones ionizantes pueden destruir preferentemente las células tumorales y constituyen una terapéutica eficaz contra el cáncer, la radioterapia, que fue una de las primeras aplicaciones del descubrimiento de la radioactividad.
En Francia, entre el 40 y el 50% de los cánceres se tratan por radioterapia, a menudo asociada a la quimioterapia o la cirugía. La radioactividad permite curar un gran número de personas cada año.
Las diferentes formas de radioterapia:
La curioterapia, utiliza pequeñas fuentes radioactivas (hilos de platino – iridio, granos de cesio) colocados cerca del tumor.
La tele radioterapia, consiste en concentrar en los tumores la radiación emitida por una fuente exterior.
La inmunorradioterapia, utiliza vectores radio marcados cuyos isótopos reconocen específicamente los tumores a los que se fijan para destruirlos.
La esterilización
La irradiación es un medio privilegiado para destruir en frío los microorganismos: hongos, bacterias, virus… Por esta razón, existen numerosas aplicaciones para la esterilización de los objetos, especialmente para el material médico-quirúrgico.
La protección de las obras de arte
El tratamiento mediante rayos gamma permite eliminar los hongos, larvas, insectos o bacterias alojados en el interior de los objetos a fin de protegerlos de la degradación. Esta técnica se utiliza en el tratamiento de conservación y de restauración de objetos de arte, de etnología, de arqueología.
La elaboración de materiales
La irradiación provoca, en determinadas condiciones, reacciones químicas que permiten la elaboración de materiales más ligeros y más resistentes, como aislantes, cables eléctricos, envolventes termo retractables, prótesis, etc.
La radiografía industrial X o g
Consiste en registrar la imagen de la perturbación de un haz de rayos X o g provocada por un objeto. Permite localizar los fallos, por ejemplo, en las soldaduras, sin destruir los materiales.
Los detectores de fugas y los indicadores de nivel
La introducción de un radioelemento en un circuito permite seguir los desplazamientos de un fluido, detectar fugas en las presas o canalizaciones subterráneas.
El nivel de un líquido dentro de un depósito, el espesor de una chapa o de un cartón en curso de su fabricación, la densidad de un producto químico dentro de una cuba… pueden conocerse utilizando indicadores radioactivos.
Los detectores de incendio
Una pequeña fuente radioactiva ioniza los átomos de oxígeno y de nitrógeno contenidos en un volumen reducido de aire. La llegada de partículas de humo modifica esta ionización. Por esta razón se realizan y se utilizan en los comercios, fábricas, despachos… detectores radioactivos sensibles a cantidades de humo muy pequeñas.
Las pinturas luminiscentes
Se trata de las aplicaciones más antiguas de la radioactividad para la lectura de los cuadrantes de los relojes y de los tableros de instrumentos para la conducción de noche.
La alimentación de energía de los satélites
Las baterías eléctricas funcionan gracias a pequeñas fuentes radioactivas con plutonio 239, cobalto 60 o estroncio 90. Estas baterías se montan en los satélites para su alimentación energética. Son de tamaño muy reducido y pueden funcionar sin ninguna operación de mantenimiento durante años.
La producción de electricidad
Las reacciones en cadena de fisión del uranio se utilizan en las centrales nucleares que, en Francia, producen más del 75% de la electricidad.
1. El ciclo del combustible nuclear
En un reactor, la fisión del uranio 235 provoca la formación de núcleos radioactivos denominados productos de fisión. La captura de neutrones por el uranio 238 produce un poco de plutonio 239 que puede proporcionar también energía por fisión.
Sólo una ínfima parte del combustible colocado en un reactor se quema en la fisión del núcleo. El combustible que no ha sido consumido y el plutonio formado se recuperan y se reciclan para producir de nuevo electricidad. Los otros elementos formados en el transcurso de la reacción se clasifican en tres categorías de residuos en función de su actividad, para ser embalados y luego almacenados.
2. La seguridad nuclear
La utilización de la fantástica fuente de energía contenida en el núcleo de los átomos implica el respeto riguroso de un conjunto de reglas de seguridad nuclear que permita asegurar el correcto funcionamiento de las centrales nucleares y la protección de la población.
3. Los residuos nucleares
Toda clase de actividad humana genera residuos. La industria nuclear no es una excepción a esta regla. Francia produce, de promedio, por año y por habitante:
5.000 Kg de residuos, de los cuales
100 Kg de residuos tóxicos, que incluyen
1 Kg de residuos nucleares de los cuales
5 gr de residuos son de alta actividad.
No sabemos aún destruir los residuos radioactivos. Su actividad disminuye naturalmente en el tiempo, más o menos rápido en función de su período. Deben utilizarse, por consiguiente, técnicas de confinamiento y de almacenamiento.
La reducción del volumen y de la actividad de los residuos radioactivos es, en Francia, un objetivo prioritario para la investigación. La amplitud del comportamiento a largo plazo de los residuos acumulados también es un eje primordial en la investigación

1 comentario: